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Abstract

An accurate description of trophic interactions is crucial to understand ecosystem function-

ing and sustainably manage marine ecosystems exploitation. Carbon and nitrogen stable

isotopes were coupled with stomach content analyses to investigate whiting (Merlangius

merlangus, Linnaeus, 1758) feeding behavior in the Eastern English Channel and Southern

North Sea. Whiting juveniles and adults were sampled in autumn and winter to investigate

both ontogenetic and seasonal changes. In addition, queen scallops (Aequipecten opercu-

laris) samples were collected along with fish to be used as isotopic benthic baseline. Results

indicated an ontogenetic diet change from crustaceans to fish and cephalopods. In autumn,

δ15N values generally increased with fish size while in winter, a decrease of δ15N values

with fish size was observed, as a potential result of spatial variation in baseline δ15N values.

In winter, a nutrient-poor period, an increase in feeding intensity was observed, especially

on the copepod Temora longicornis. This study provides further insights into whiting trophic

ecology in relation to ontogenetic and seasonal variations, and it confirms the importance of

combining several trophic analysis methods to understand ecosystem functioning.

Introduction

Since trophic interactions shape communities’ structure, determining fish diet is a key prereq-

uisite for a better understanding of ecosystem functioning [1, 2] and a sustainable manage-

ment of marine ecosystems [3, 4]. Ecosystem functioning refers to biotic and abiotic processes

that occur within an ecosystem and determine its structure and stability [5, 6]. Trophic inter-

actions play a central role on ecosystem functioning, implying transfer of energy and nutrients

between species [7] but also trophic cascades [1, 8], the understanding of which is necessary to

gain knowledge on food webs structure and eventually inform ecosystem-based management

[3, 4, 9].

Organism’s energetic requirements differ according to their size. Ontogenetic dietary shifts,

the changes in resource use over the lifespan of a consumer, are widespread for many taxa [10,
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11]. Consumers make trade-offs between benefits (e.g., foraging) relative to associated costs

including mortality [10]. These trade-off changes according to ontogeny depending on the bal-

ance between the risk of mortality due to predation and the benefits received from the

resource. Several biotic (predation risk, competition, prey availability) or abiotic (habitat use)

factors may be responsible of these variations [12]. In addition, species intrinsic factors, such

as the gape size or swimming abilities promote these ontogenetic changes. A positive relation-

ship between size descriptors (e.g. body or gape size) and trophic level is thus classically

observed for fish species in marine environments [13, 14], even if unexpected results recently

called for a better examination of the pattern underlying this relationship [15]. Similarly, sea-

sonal variation of environmental (temperature, nutrients) and biotic factors (metabolism,

feeding intensity, prey availability) can alter feeding patterns [16]. Both ontogenetic and sea-

sonal changes in fish foraging patterns have important consequences for ecosystem structure,

function and stability, calling for a better consideration of their magnitude [17].

The Eastern English Channel and Southern North Sea (EEC-SNS) is home to a rich and

intensively used ecosystem, which has long supported a wide range of human activities, in a

climate change context. Local impact of fisheries is particularly important [18]. The present

study focuses on whiting (Merlangius merlangus (Linnaeus, 1758)), an important demersal

species in the EEC-SNS ecosystem, both in ecological and economic terms [15, 19]. Whiting is

thus known to have one of the highest trophic level within the EEC-SNS fish community [20].

Due to its high trophic position, whiting biomass production is fueled by both pelagic and ben-

thic pathways [21], as demonstrated by stable isotopes analyses [22, 23], leading to important

biomass values for this species. The diet of this high trophic level species is well investigated in

many ecosystems because it predates on commercially exploited fish and invertebrates, and

also since it can compete with other economically valuable gadoid species [24]. Most studies

highlight the main consumption of fish and invertebrates (e.g. crustaceans, mollusks or anne-

lids). Some of them report an ontogenetic change in whiting diet, with small individuals

mostly consuming crustaceans, and larger whiting mostly consuming fish. This feeding pat-

tern has been previously observed in other ecosystems, i.e., the North Sea [24–26], Baltic Sea

[24], or Celtic Sea [27, 28]. However, ecosystems are subject to different environmental and

ecological conditions. All differences in prey availability, predator abundance, fishing pressure

and abiotic features make differences between the ecological role and diet of M.merlangus in

an ecosystem and its conspecific in other ecosystems. To our knowledge, studies that have

investigated EEC whiting diets have not focused on ontogenetic and seasonal diet changes [29,

30]. The increased trophic importance of fish with ontogeny is consistent with outputs of an

independent modeling study based on an EEC application of the OSMOSE ecosystemic model

[15]. Except this modeling study, the trophic ecology of whiting in EEC-SNS was mainly stud-

ied by stomach content analyses, providing a short-term view of its diet [24, 25, 30]. The use of

stable isotope analyses in addition to analyses of stomach contents helps to resolve some com-

mon biases related to the analysis of stomach contents.

When consuming a prey, a predator integrates the carbon and nitrogen isotopic ratios of its

prey into its own tissues, with a difference called isotopic discrimination [31]. The muscle

nitrogen isotopic ratio (δ15N), empirically enriched by ~3.4 ‰ per trophic level, is classically

used as an estimator of the trophic position [32]. Muscle carbon isotopic ratio (δ13C) is less

enriched (~1 ‰ per trophic level), allowing its use as tracer of the origin of food sources [33].

In the marine environment, δ13C is used to distinguish between benthic and pelagic sources

because benthic producers are typically 13C-enriched relative to pelagic producers [34]. Unlike

stomach content analyses, stable isotope ratios of an organism’s tissues provide information

on the time-integrated assimilated diet. Combining stable isotopes and stomach content
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analyzes is thus recognized as a powerful approach to gain accurate and complementary vision

of fish trophic patterns at different time scales [35–37].

The aims of this study are (1) to investigate whiting trophic ecology in the EEC-SNS and,

(2) to study ontogenetic and seasonal feeding changes at two seasons, autumn 2017 and winter

2018, using stomach content and stable isotopes analyzes. We will in particular test the hypoth-

esis that whiting trophic ecology changes according to both ontogeny, due to gape size and

energy requirements increasing, and seasonal variations in environmental and biotic factors.

Materials and methods

Studied area and sampling

Whiting individuals were collected during two bottom trawl surveys conducted in the

EEC-SNS. Sampling locations are presented in the map (Fig 1), and actual coordinates are pre-

sented in the supporting materials (S1 Fig and S1 Table). These surveys investigate most com-

ponents of the ecosystem, from the abiotic environment to top-predators. The CGFS (Channel

Ground Fish Survey) occurred in autumn 2017 and the IBTS (International Bottom Trawl Sur-

vey) occurred in winter 2018, both on board of the R/V Thalassa [38, 39]. Protocols of all sur-

veys are currently being evaluated by the French research institute for exploitation of the sea

(Ifremer) and are validated by the ICES IBTS International Group [40]. In addition, survey’s

PIs received training about animal well-being and ethics.

Following the standard IBTS protocol [40], whiting and queen scallops (Aequipecten oper-
cularis) individuals were collected using a 36/47 Grande Ouverture Verticale (GOV) bottom

trawl towed for 30 minutes during daylight at a constant speed of 4 knots. Immediately after

trawling, all fish were sorted, identified, weighed, and measured. Whiting individuals covering

all size distribution in the trawl were kept for further analyzes. Fish were immediately frozen

Fig 1. Localization of stations sampled during the two surveys: CGFS 2017 (red squares, autumn 2017) and IBTS 2018 (blue cross, winter

2018). Left: sampling locations of fish smaller than 25cm. Right: sampling locations of fish larger than 25cm.

https://doi.org/10.1371/journal.pone.0239436.g001
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(-50˚C) to stop digestion process, and then stored frozen onboard (-20˚C). Queen scallops (A.

opercularis) samples were collected and stored frozen to be used as isotopic benthic baseline in

the calculation of trophic level, following most classical approaches [20, 41, 42]. Organisms

were sacrificed following the standard international IBTS protocol [40].

In the laboratory, fish were thawed and accurately measured (total length, to the nearest

mm) before being dissected out, to collect muscle sample for isotopic analysis and stomach

content. Gape size is an important parameter in the trophic relationships determinism and it

was measured with truncated cones of different diameters. In order to cover the whole size

range and to have a sufficient number of samples for numerical analyses, a minimum of 10

individuals per 5cm size classes were collected. A sample of white dorsal muscle (~ 2g wet

mass) without skin (fish) or adductor muscle (bivalves) was dissected, stored frozen and then

freeze-dried for at least 24h. White dorsal muscle is the most classical tissue used for stable iso-

topes analysis in fish because of its low turnover rate and low lipid content [43], notably for

whiting, one of the species with the lowest C:N ratio and consequently lipid content in the area

[44]. As C:N ratios measured in all samples were low (average value: 3.19 ± 0.08, min: 3.08,

max: 3.43), raw isotopic ratios were used.

All samples (fish and A. opercularis’ muscles) were ground into a homogeneous powder (~

1g dry wet) with a mixer mill for isotopic analysis. A total of 248 individuals were sampled for

stomach content analysis (124 in autumn and 124 in winter) and 212 were subsampled for sta-

ble isotopes (Table 1).

Stomach content analysis

Prey items in stomach content were sorted under a binocular microscope and categorized into

their lowest possible taxonomic group. The vacuity rate (%V) was used as an estimator of feed-

ing intensity and it was calculated as the number of empty stomachs divided by the total num-

ber of stomachs. For each size class, dietary index was calculated based on Hyslop [45].

Frequency of occurrence (Oi) was first considered and calculated as the number of stomachs

containing a prey type divided by the number of non-empty stomachs.

Oi ¼
Ji
P

Where, Ji is the number of fish containing prey i and P is the number of non-empty stomachs.

This estimator is based on presence/absence, and it does not take into account the quantity of

Table 1. Number of stomach content (n SCA) and stable isotopes (n SIA) analyzed by size classes, mean and range in stable isotopes ratios (mean δ15N ± SD, mean

δ13C ± SD) observed and gape size for both seasons (autumn and winter).

n SCA n SIA δ13C (‰) mean ± SD δ15N (‰) mean ± SD C:N ratio mean ± SD Trophic level mean ± SD Gape size (mm) mean ± SD

Autumn 10-15cm 20 16 -17.16 ± 0.93 14.42 ± 0.87 3.19 ± 0.08 3.86 ± 0.25 13 ± 2

15-20cm 19 18 -16.99 ± 0.41 14.97 ± 0.35 3.20 ± 0.06 4.06 ± 0.13 17 ± 2

20-25cm 22 18 -16.90 ± 0.47 16.02 ± 0.51 3.17 ± 0.08 4.40 ± 0.17 22 ± 1

25-30cm 20 18 -16.73 ± 0.30 16.33 ± 0.43 3.19 ± 0.09 4.40 ± 0.15 26 ± 3

30-35cm 24 22 -16.60 ± 0.34 15.95 ± 0.76 3.18 ± 0.06 4.33 ± 0.27 33 ± 2

35+ 19 15 -16.65 ± 0.52 15.42 ± 0.73 3.18 ± 0.06 4.10 ± 0.30 41 ± 3

Winter 15-20cm 33 28 -17.31 ± 0.56 17.59 ± 0.89 3.19 ± 0.04 4.74 ± 0.26 19 ± 3

20-25cm 23 21 -16.77 ± 0.68 16.66 ± 0.12 3.20 ± 0.08 4.47 ± 0.25 22 ± 2

25-30cm 23 21 -16.77 ± 0.56 16.16 ± 0.98 3.23 ± 0.10 4.38 ± 0.28 28 ± 2

30-35cm 31 21 -17.20 ± 0.60 15.71 ± 0.85 3.22 ± 0.11 4.34 ± 0.23 33 ± 3

35 + 14 14 -17.34 ± 0.68 15.84 ± 1.12 3.20 ± 0.09 4.34 ± 0.27 39 ± 3

https://doi.org/10.1371/journal.pone.0239436.t001
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prey items found in each stomach. For graphical representations, frequencies of occurrence

were scaled to 100% and expressed as percentage.

%O ¼
OiP
Oi

Percentage of abundance (%N) represented the number of prey items (Ni) relative to the

total number of food items.

%N ¼
NiP
Ni

Abundance and occurrence-based indices were used as they are considered less biased than

indices calculated from prey biomass measurement [12, 45]. Assessing the occurrence or abun-

dance of preys is a testimony of what was actually consumed, notably as prey abundance is

based on a parsimonious method that limits overestimation of the number of degraded items,

by estimating the most plausible number of prey individual that have originated the number of

remains: paired items (e.g. otoliths, eyes, claws) were counted and divided by two. Other

uncountable remains (e.g. muscles, gills, annelids bristles) were not counted and considered as

remains of a single individual. On the contrary, biomass based indices are questioned, as they

are more affect by well-known biases of stomach content. Differential digestibility of the preys

leads to an overestimation of the mass of hard parts, and as biomass of parts found of the stom-

achs is the biomass of the undigested part of the diet, while stable isotopes reflect the part of

the diet integrated in the tissues. Since stomach content analysis only provides a snapshot of

fish diet, this approach was combined with stable isotopes analysis of fish tissue, which pro-

vides information on the time-integrated assimilated diet [35–37].

Stable isotopes analyses

Isotopic analyzes were carried out with a Thermo Fisher Scientific Delta V Plus mass spec-

trometer (Bremen, Germany), coupled to a Flash 2000 elemental analyzer with a Conflow IV

interface (Thermo Scientific, Milan, Italy). Ratios were expressed with the classical δ notation,

dX ¼
Rsample
Rstandard

� 1

� �

�103 ðin‰Þ;

where X is 13C or 15N respectively, and R the ratio 13C/12C or 15N/14N respectively. Standards

are Vienna Pee Dee Belemnite for δ13C and atmospheric nitrogen for δ15N. Accuracy of the

analyses was checked by repeated measurements of internal acetanilide standards. The mea-

surement error is less than 0.2‰ for both elements.

Since δ15N values result from the trophic position of the consumer, and from the isotopic

ratio of the baseline, it is a relative proxy of the consumers’ trophic position [32].The trophic

level of whiting (TLi) was calculated following Post [32] equation:

TLi ¼ TLB þ
d

15 Ni � d
15 NB

TDF
;

where TLB represents the trophic position of trophic baseline, δ15Ni and δ15NB are the nitrogen

isotopic ratios of fish and trophic baseline respectively, and TDF, the Trophic Discrimination

Factor, represents the isotopic difference between a consumer and its diet. TLB was set to a

value of 2, the theoretical trophic level of suspension-feeders, while TDF value was set to 3.4, fol-

lowing most classical approach [46, 47]. It is well known that isotopic ratios of the baseline vary

spatially [41, 48, 49]. A station-specific baseline value was used to take into account the spatial
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variability of isotopic ratios (S1 Fig and S1 Table). As A. opercularis samples could not always be

found in the stations where fish were collected, missing δ15N values were calculated with a geos-

tatistical interpolation of baseline δ15N values developed by Kopp et al. [29], and using A. oper-
cularis isotopic ratios obtained in the present and previous published [41] and unpublished

studies (P. Cresson unpubl. data). A total of 76 isotopic measurements were used as a baseline

for geostatistical interpolation (mean δ15N: 7.69 ± 0.90 ‰). The dependency of covariance on

distance between two sampling sites was modelled using a non-linear regression based on

weighted least squares. The weight is the number of pairs of points per distance intervals. Spatial

covariance in δ15N was best described by a Gaussian model of distance with adjR2 = 0.99.

Numerical analysis

The seasonal and ontogenetic variations of stable isotope values (δ15N, δ13C), abundances and

occurrences of prey found in stomach contents, were investigated using Generalized Linear

Models (GLM). Two discrete explanatory variables were thus considered: fish size (5cm size

classes) and season (autumn and winter). Individual effects of these two explanatory variables,

as well as their interactions were examined. Using discrete size classes in isotopic analyses

GLMs was justified a posteriori by the non-monotonic character of the isotopic ratios versus

size relationships. For stomach contents analyses, size-class analyses allow to account for the

highly non-linear nature of dietary mechanisms. Each individual within a size class is consid-

ered as a replicate of the class. Having the diet of several individuals within a size-class is

required to capture the diet of a class, and to limit the importance of extreme feeding mecha-

nisms. Individual effects of these two explanatory variables, as well as their interactions were

examined. The explained variables are structurally different, some are continuous (stable iso-

tope values), others are counts (abundances) and eventually prey occurrences are binary vari-

ables, so different probability distributions were assumed to underlie their variations. For

stable isotopes values, a Gaussian type was assumed, and the normality of residuals was tested

by examining the characteristic Quantile-Quantile (QQ) plot [50]. For prey abundances and

occurrences, GLMs were performed separately on the main categories of preys (i.e. fish, mol-

lusks, benthic crustaceans, pelagic crustaceans and unidentified crustaceans). A binomial dis-

tribution with a logit link function was applied to model the variability of binary prey

occurrence (presence = 1, absence = 0). Finally, a GLM building on a Poisson distribution and

a log link function was applied to model the variability of prey abundance counts.

All analyses and figures were performed with R version 3.6 [51]. Maps were produced using

akima [52], GISTools [53] and mapdata [54] packages. Statistical analyses were carried out using

the car [55] package, using the glm function. Most figures were realized using ggplot2 [56].

Results

Fish size ranged between 106 and 528 mm. Average size was similar at both seasons for both the

whole dataset (246 ± 89 mm in autumn, 257 ± 76 mm in winter) and the subsample considered

for stable isotopes (252 ± 83 mm in autumn, 262 ± 76 mm in winter). Subsample used for stable

isotopes analyses can thus be considered representative of the larger sample used for stomach

content analyses. Although the average size was comparable between the two seasons, no whit-

ing smaller than 15 cm were collected in winter. Gape size increased with fish size and ranged

from 13 ± 2 mm for the smallest size class to 41 ± 3 mm for the largest in autumn (Table 1).

Stomach content analyzes

Vacuity rates were low for both seasons (16% in autumn and 7% in winter). Whiting diet was

mainly composed of fish (Oi = 0.57, %O = 25.5%), crustaceans, with a similar importance of
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benthic (Oi = 0.43, %O = 19%) and pelagic (Oi = 0.38, %O = 17%) species, and mollusks (Oi =

0.17, %O = 8%) (Fig 2).

Despite the degradation of fish prey, the main groups observed in stomach contents were

perciforms in autumn (e.g. Callionymidae, Gobiidae, Carangidae) and clupeiforms (e.g. Clupea
harengus, Sprattus sprattus) in winter. Similar benthic crustaceans were consumed in both sea-

sons: peracarids (e.g. amphipods, cumaceous) for the smallest size classes and decapods for the

Fig 2. Whiting diet averaged over seasons and size classes, expressed as frequency of occurrence (Oi). Since a stomach may contain several preys, the sum

of the frequencies of occurrence represents more than 1. For each prey group, frequencies of occurrence were scaled to 100% for the graphical representation

(%O).

https://doi.org/10.1371/journal.pone.0239436.g002
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largest. Pelagic crustaceans were mainly copepods, with Temora longicornis being very abun-

dant in winter (%N = 63%), and mysids. The taxon-specific results can be found in the dataset

published at the following address: https://doi.org/10.17882/72233. For mollusks, bivalves and

gastropods dominated diet of smallest individuals while the largest whiting mainly fed on

cephalopods at both seasons. Among other prey categories, annelids, cnidarians, echinoderms

or plant debris were also found in stomach contents at both seasons but in smaller quantities.

They were then grouped into one group referred to as “other” hereafter.

The same categories of prey were found between autumn and winter but their relative

importance differed according to seasons and size classes (Fig 3), whether these factors are

considered individually or in interaction (Table 2). In winter, as whiting grows, it consumes

more fish, both in occurrence and abundance, with the largest size classes (above 30cm) feed-

ing more selectively on clupeids (Table 2 and Fig 3). A similar ontogenetic increase appears in

the consumption of mollusks, both in abundance and occurrence, with little seasonal differ-

ence (Fig 3 and Table 2).

In contrast, the abundance and occurrence of crustaceans decreased according to ontogeny

but patterns differed according to the nature of crustaceans (benthic, pelagic and unidentified)

and seasons. For benthic crustaceans, the decrease in occurrence during ontogeny was mainly

pronounced in winter (Fig 3 and Table 2). The decrease in abundance was observed for both sea-

sons (p-value<0.001), but the highest prey abundance was observed for the 20-25cm size class.

The ontogenetic decrease in occurrence of pelagic crustaceans was similar in autumn and win-

ter (Fig 3 and Table 2). Abundance decreased for both seasons according to size classes (Fig 3 and

Table 2) but more pelagic crustaceans were consumed in winter. The high consumption of pelagic

Fig 3. Predicted values from GLM for average probability of prey occurrences (left) and number of prey items (Ni) in an individual stomach (right) and for both

seasons (autumn in red and winter in blue). Errors bars correspond to standard errors. For graphical purposes, the vertical axis of the plot presenting abundance of

pelagic crustaceans was cut between 5 and 60cm.

https://doi.org/10.1371/journal.pone.0239436.g003
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crustaceans in winter (primarily the copepod T. longicornis) mainly concerned the 15–20 size

class. Pelagic crustaceans were 21 times more abundant in stomachs in winter than in summer.

Finally, occurrence of unidentified crustaceans did not vary according to size class nor sea-

son, while abundance decreased with ontogeny, especially in winter (p-value<0.001, Table 2)

similarly to the two other crustacean groups.

Table 2. Results of generalized linear model (type 3).

Response variable df Residual deviance Explanatory variables df Deviance Residual deviance df p-value (Chi-square)

Occurrence–fish 245 291.28 Size class 5 26.55 314.42 240 <0.001

Season 1 2.77 311.65 239 0.10

Size class × season 4 20.37 291.28 235 <0.001

Occurrence - Benthic crustaceans 245 299.05 Size class 5 13.23 314.94 240 0.02

Season 1 2.17 312.76 239 0.14

Size class × season 4 13.72 299.05 235 0.009

Occurrence - Pelagic crustaceans 245 223.03 Size class 5 70.88 244.99 240 <0.001

Season 1 18.48 226.50 239 <0.001

Size class × season 4 3.74 223.03 235 0.48

Occurrence - Unidentified crustaceans 245 299.73 Size class 5 6.01 305.75 240 0.31

Season 1 1.79 303.96 239 0.18

Size class × season 4 4.24 299.73 235 0.38

Occurrence - Mollusks 245 190.13 Size class 5 12.86 195.46 240 0.02

Season 1 3.80 191.66 239 0.05

Size class × season 4 1.52 190.13 0.82 0.82

Abundance - fish 245 264.21 Size class 5 41.62 297.25 240 <0.001

Season 1 9.49 287.76 239 0.002

Size class × season 4 23.55 264.21 235 <0.001

Abundance - Benthic crustaceans 245 1888.00 Size class 5 475.28 2061.80 240 <0.001

Season 1 110.95 1950.90 239 <0.001

Size class × season 4 62.94 1888.00 235 <0.001

Abundance - Pelagic crustaceans 245 3871.60 Size class 5 5574.00 5644.40 240 <0.001

Season 1 1735.00 3909.30 239 <0.001

Size class × season 4 37.80 3871.60 235 <0.001

Abundance - Unidentified crustaceans 245 588.34 Size class 5 99.62 652.42 240 <0.001

Season 1 41.84 610.58 239 <0.001

Size class × season 4 22.24 588.34 235 <0.001

Abundance - Mollusks 245 235.12 Size class 5 48.69 245.29 240 <0.001

Season 1 1.96 243.33 239 0.16

Size class × season 4 8.21 235.12 235 0.08

δ13C 211 64.26 Size class 5 5.64 72.76 206 0.003

Season 1 4.04 68.72 205 <0.001

Size class × season 4 4.46 64.26 201 <0.001

δ15N 211 126.84 Size class 5 67.12 208.22 206 <0.001

Season 1 23.58 184.64 205 <0.001

Size class × season 4 57.80 126.84 201 <0.001

Trophic level 211 11.50 Size class 5 5.36 206 206 <0.001

Season 1 1.94 205 205 <0.001

Size class × season 4 3.60 201 201 <0.001

df: Degrees of Freedom. Significant effects (at p-value<0.05) of the tested explanatory variables are highlighted in bold characters.

https://doi.org/10.1371/journal.pone.0239436.t002
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Stable isotopes

δ15N values varied within a 2‰ range for both seasons, from 14.42 ± 0.87‰ (10-15cm) to

16.33 ± 0.43‰ (25-30cm) in autumn, and from 15.71 ± 0.85‰ (30-35cm) to 17.58 ± 0.78‰

(15-20cm) in winter (Fig 4 and Table 2). Trophic levels ranged from 3.86 ± 0.25 (10-15cm) to

4.40 ± 0.15 (25-30cm) in autumn, and from 4.34 ± 0.27 for largest individuals (>35cm) to

4.74 ± 0.26 for smallest individuals (15-20cm).

However, slight differences according to seasons and size class were observed (Fig 4 and

Table 2). Size effect on both trophic level and δ15N values differed between seasons for smaller

whiting (<25cm), with an ontogenetic increase in autumn. In winter, the unexpectedly high

value measured for the smallest individuals led to a general decreasing trend. Size effects were

season-invariant for larger whiting (>25cm), with a similar slight ontogenetic decrease in both

autumn and winter. δ13C values displayed approximatively a 0.5‰ range for both seasons and

varied significantly (p<0.001, Table 2) from -17.16 ± 0.93‰ (10-15cm) to -16.60 ± 0.34‰ (30-

35cm) in autumn and from -17.34 ± 0.68‰ (35+) to -16.77 for both 20–25 (-16.77 ± 0.68‰)

and 25–30 (-16.77 ± 0.65‰) size classes in winter. In autumn, δ13C increased with fish size,

while in winter it increased up to 20cm and decreased after 30cm (Fig 4).

Discussion

General ontogenetic patterns in whiting diet

M.merlangus is considered as a piscivore species, notably for larger individuals [24, 26, 57].

Consistently with previous studies [24, 26, 27], in the EEC-SNS, piscivory mainly concerned

largest size classes. The increased trophic importance of fish with ontogeny is also consistent

Fig 4. Relationship between δ13C, δ15N and trophic level according to size classes in autumn and winter respectively (autumn in red and winter in blue). The edges

of the boxes are the first and third quartiles, the horizontal lines are median values. Outliers are calculated using 1.5 times interquartile space (distance between the first

and third quartile).

https://doi.org/10.1371/journal.pone.0239436.g004
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with outputs of an independent modeling study based on an EEC application of the OSMOSE

ecosystemic model [15]. Interestingly, outputs from this model already predicted the predomi-

nance of fishes in whiting diet for individuals of 25cm or more. However, fish do not constitute

the main food item for smallest size classes. Smallest size classes mainly consumed pelagic crus-

taceans. A similar pattern was previously observed for saithe (Pollachius virens), another gadoid

species with a strong specialization of smaller individuals on euphausiids and copepods [58].

Most studies highlighted the consumption of crustaceans but did not distinguish between

benthic or pelagic species [24, 26, 27]. However, this consideration is important for a better

understanding of food web functioning and fluxes. Previous studies based on stable isotopes

confirmed the important benthic-pelagic coupling in this area, but were not able to identify

mechanisms at play, i.e., if coupling results from the consumption of benthic invertebrates by

pelagic fish or from the integration of benthic production in the pelagic pathway [22, 29]. The

similar importance of both groups of crustaceans may testify that the two hypotheses cannot

be ruled out.

Seasonal ontogenetic patterns in whiting diet

Autumn. Results obtained from stable isotopes analyzes in autumn are similar with those

obtained by Kopp et al [29] during the same period, in a different year. In the present study,

results obtained in autumn from stomach content analyses and carbon isotopes values dis-

played consistent patterns. Since pelagic organisms are generally δ13C-depleted compared to

benthic ones [29, 34] the increase of δ13C values is thus consistent with a diet switch from

pelagic invertebrates to benthic fish as whiting grows. The link between prey found in stomach

contents and δ15N values is of a more complex nature though. The increase of δ15N values

could reflect the ontogenetic diet shift, from crustaceans to higher trophic level cephalopods,

as revealed by stomach contents analyzes, but only for whiting ranging between 15 and 30cm.

This increase is an expected pattern and it was observed in many ecosystems and for many

taxa [10, 59, 60]. The positive relationship between δ15N values and body size is commonly

observed for piscivores [13]. Larger fishes have a larger gape size, but also higher energetic

demands. Consumption of larger, energy-richer and of higher trophic level prey becomes an

obvious way to fulfill metabolic needs [59]. Ontogenetic diet shift is well-documented for whit-

ing in other ecosystems, i.e., in the North Sea [24, 26, 43], Celtic Sea [27, 28], or Baltic sea [24]

and generally occurs between 15 and 30cm. Ontogenetic shift probably occurs due to increase

of gape size and enhanced detection and capture abilities allowing larger individuals to maxi-

mize their energy input through the consumption of larger prey. Fish do have a higher ener-

getic content than invertebrates [61]. Similarly, even if the energetic content per unit of body

mass is ~10 times higher for bivalves than for cephalopods [62, 63], cephalopods are heavier

than bivalves, and might also be more accessible than shell-sheltered organisms, despite their

higher mobility. The consumption of a cephalopod can thus be more profitable in terms of

energy input.

It is not entirely clear why δ15N values decrease slightly with fish size for larger whiting

(>30cm) but the decrease is low (~1‰), i.e., of ~0.3 trophic level assuming a trophic discrimi-

nation factor of 3.4‰ [32] and may not track a change in diet. The study site is shallow and

presumably has high δ15N value, because denitrification in sediments increase the δ15N value

of pore water, and consequently of the organic matter at the base of food webs [64, 65]. There-

fore, because whiting migrate only after the first year of life [66], smaller fish with low migra-

tion ability had higher δ15N values. On the other hand, since isotopic ratios of the baseline vary

spatially [41, 48], we can hypothesize that the decrease in δ15N for larger individuals does not

reflect a different diet, but an artifact related to a spatially different baseline. As mentioned by

PLOS ONE Seasonal and ontogenetic variation of whiting diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0239436 September 23, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0239436


www.manaraa.com

Reddin et al. [49], from an isotopic point of view, baseline can sometimes be more variable

than the diet. Here, the difference between the minimal and maximal δ15N values kriged for

queen scallops was of ~1.5‰ (S1 Table). However variations may be more important if consid-

ering neighboring areas, i.e. the Western English Channel or northern areas in the North Sea

[41, 48]. Assuming high migration abilities for larger whiting [66], their isotopic ratios may

reflect a diet in areas where baseline δ15N is markedly lower. Investigating isotopic ratios of

whiting over a large spatial continuum, with samples from the whole English Channel and the

North Sea could thus be useful to better understand the influence of spatial migration on fish

isotopic ratios.

Winter. At the beginning of the winter period, higher prey abundances in stomach con-

tents and lower vacuity rates evidenced an increase of prey uptake and feeding intensity. This

was particularly reflected by a high abundance of T. longicornis in 15-20cm whiting stomachs.

The large consumption of pelagic crustaceans, especially copepods, was also reported in the

North Sea [25, 67]. This increase may result from an opportunistic behavior to supply energetic

demands during a nutrient-poor period, for a size class that is constrained in the range of prey

it can access and feed on. In the EEC-SNS, winter nutrient concentration and temperatures

were lower than in autumn [68–70]. All copepods do not have the same behavioral response to

temperature changes. For instance, T. longicornis slows down its swimming speed and activity

during colder conditions [71] while Calanus finmarchicus is not affected by changing tempera-

ture conditions [72]. Consequently, increasing the consumption of T. longicornis in winter

would be favored, as catching this species would come at relatively low energy cost. Further-

more, T. longicornis has a relatively low energetic value per individual [73], which may explain

why it was found in large quantities to fulfil whiting energetic needs. δ13C values obtained in

winter are consistent with a diet based on pelagic crustaceans for small size class, then switching

to benthic crustaceans for intermediates and pelagic fish for largest individuals. Past [19] and

present results confirm that Clupeidae are an abundant and accessible prey for large whiting in

winter. During this period, Downs herring [74] and S. sprattus [75] gather in very large num-

bers in the EEC-SNS to mate and spawn. The large abundance of Clupeidae in large whiting

stomachs reflects that the winter spawning migration of these species in the EEC represents an

important trophic opportunity for whiting during a nutrient-poor period. Previous studies

reported a particularly high energetic value for these species [63, 76]. Energy content analyzes

performed on 78 species taken from the northeast Atlantic Ocean thus revealed that C. harengus
was the prey with the highest energy density [63]. Nevertheless adult sprats (maturity between 7

and 14cm, [69]) are smaller than adult herring (maturity between 20 and 30cm, [69]), making

them more accessible for large whiting despite their lower energy content.

However, the overall decrease of δ15N and trophic level with fish size observed in winter is

inconsistent with diet, highlighting the interest of coupling stomach content and stable iso-

topes analyses. This negative trend was observed for some benthic species, due to shifts in prey

preferences, from carnivore benthic species to suspension-feeders prey [15, 29, 77]. However,

the relative nature of stable isotopes values calls for a cautious interpretation of odd and unex-

pected patterns. This trend may be largely driven by unexpectedly high trophic levels

(4.74 ± 0.26) calculated for small whiting individuals. Lower trophic levels (~2.6–3.1) were for

example estimated by Jennings and van der Molen [20] for individuals of the same size. Thus,

the capacity of δ15N values to reflect trophic level could be blurred by inaccurate baseline or

fractionation factors [37, 78]. Previous studies notably highlighted the importance of spatial

factors, here the inshore-offshore gradient on the food web structure and consequently on spe-

cies’ isotopic ratios in the English Channel [20, 29]. Ontogenetic change in diet, as already dis-

cussed, and the predominance of pelagic crustaceans in the diet of smallest whiting suggest

that small whiting do not feed on high trophic level prey in winter. Interestingly, small whiting
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(<20cm) sampled in January 2017 (i.e. one year before present sampling) at coastal locations

close to the stations where small whiting were collected in the present work exhibited similarly

high δ15N values (P. Cresson, unpubl. results). Thus, several hypotheses can be proposed to

explain these unexpectedly high δ15N values consistently found in small whiting.

One of the well-known limitations of stomach contents is the impossibility of identifying

soft-bodied prey, such as fish eggs, due to their rapid digestion [45, 79]. Fish eggs may have

high δ15N values, sometimes even higher than their mother [80]. The nitrogen pool present in

eggs, and in particular in the yolk sac, is inherited from their parents [80]. A previous study

measured high δ15N values (~10 to 17‰) for Downs herrings caught in their feeding grounds

in the northern North Sea, i.e., in a remote location where baseline δ15N value may be well

higher than in the SNS [48]. We then first hypothesized that increased δ15N values in small

whiting might result from the consumption of eggs laid by Downs herring females that fed in

the northern feeding ground. Since fish eggs are lipid-rich [81], their consumption would be

largely beneficial, notably as eggs are abundantly laid on the bottom by spawning herring

females. This could represent a major though very limited in time bonanza, as already

observed for other species and in other environments [81, 82]. Nevertheless, preliminary

results obtained on three females and their eggs sampled in November 2019 in the EEC did

not allow confirming this hypothesis, since isotopic ratios measured in herring muscle

(δ15N = 11.67 ± 1.33‰) and eggs (11.44 ± 0.58‰) were not high enough to explain nitrogen

enrichment in small whiting (P. Cresson, unpubl. data). Future studies based on a larger sam-

ple size, and including a simultaneous collection of herring adults, juveniles and eggs are none-

theless needed to ascertain the consumption of eggs by small whiting, and to exclude

interannual variability in the isotopic ratios of herring in the EEC-SNS.

Another possible explanation of these high δ15N values in small whiting can be linked to

local specificities. Small whiting were collected in winter at very coastal locations, close to the

outfalls of rivers Somme (in the bay of Somme) and Aa, off the city of Gravelines (Fig 1).

Catchments of these two rivers cross zones of intense agricultural activity, and pass along mid-

populated cities [83]. Several papers already demonstrated that the integration of runoff from

agricultural or urbanized areas leaf to increase nitrogen isotopic ratio in consumers [84]. Jen-

nings and van der Molen [20] also estimated high δ15N values for coastal queen scallops, as a

result of a positive relationship between estimated δ15N and minimum bottom salinities.

In addition, Gravelines hosts a fish farm (https://www.gloriamarisgroupe.com/aquanord/?

lang=en), raising 1 800 tons per year of gilthead sea bream (Sparus aurata) and sea bass (Dicen-
trarchus labrax). Integration of fish farm effluents may have also increased the δ15N values of

the surrounding food webs, notably as a result of the integration of fish feces [85]. Isotopic ratios

of raised fish are higher than wild counterparts [86]. Here, the integration of feces derived from

predatory fishes may locally increase δ15N baseline values, and explain higher δ15N values of

small whiting observed in the present study. Unfortunately, no information on isotopic ratios of

coastal queen scallops could be collected as the survey trawl could not be operated in shallow

waters. Thus, as kriging is directly dependent upon input data, local influences on queen scal-

lops isotopic ratios could not be efficiently captured, and may have induced an overestimation

of small whiting δ15N values and trophic levels. Interestingly, estimation of trophic level was

associated with highest uncertainties at coastal locations in the model of Jennings and van der

Molen [20], as a result of the effect of salinity on baseline δ15N ratios. The high concentration of

juveniles in coastal areas, and their limited movement abilities may explain why this influence

of terrigenous or fish farm derived nitrogen would primarily affect the smallest size class.

Stomach content analysis provides short-term information about the integrated diet, from

hours to days [45, 87]. Stable isotopes analysis provides information on assimilated diet at a

longer time scale than stomach contents, but varies according to the lifecycle of species. A
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meta-analysis carried out on several taxa revealed that, in general, turnover rate differs

between juveniles and adults. Stable isotopes ratios change due to growth and metabolic

replacement associated with a change in diet were observed between juveniles and adults [88].

These authors have developed an equation to estimate the turnover rate according to the body

mass (proxy of the size) and to the type of species (endotherm vs. ectotherm) and tissue. Tis-

sues characterized by a quick turnover provide the most recent dietary information. Using this

equation, the turnover rate was estimate to ~45 days for juveniles (15g average mass) which is

consistent with the turnover rate estimated for cod, another gadoid species [89]. We then

admit that juveniles ‘isotope ratios may reflect feeding during the collection season (autumn

or winter). For adults (weighing 508g on average), the turnover rate was of about three

months, consistently with the expected turnover of adult fish [87, 90, 91]. Measured isotopic

ratios may partly result from dietary elements integrated in the tissues before the sampling sea-

son, and away from EEC, due to movement abilities of adult whiting [66]. However, isotopic

integration of diet has to be viewed from a dynamic point of view. Addressing the seasonal (i.e.
in autumn and winter) and spatial (i.e. over the potential area covered by whiting over a three

months period) variability of prey isotopic ratios would also be needed. Finally, since the inte-

gration of isotopes in tissues is dynamic, additional studies are necessary to know precisely the

rate at which isotopes are incorporated into whiting’s muscle and the discrimination factor

between tissues and diet [92]. It should also be noted that the method used to estimate turn-

over rates does not distinguish between isotopes (δ13C, δ15N). However, several studies have

shown that for fish, the turnover rate of δ13C is faster than that of δ15N due to different cata-

bolic processes operating on the various biochemical constituents of tissues (amino acids, pro-

teins, lipids [93–95]). Consequently, both δ13C and δ15N for the same species inform about

diet at different time scales, highlighting the importance of considering the turnover rate to

know when that diet has been assimilated for a better understanding of species diet.

This study has led to a better understanding of whiting trophic ecology. Despite slight variations

according to seasons, results obtained for the autumn period are consistent with previous results

obtained from stable isotopes and stomach content analyzes in autumn in the same area but in dif-

ferent year [29, 30], highlighting trophic consistency through years for this species. Results obtained

from both stable isotopes, and stomach content confirmed that the high trophic position of whiting

allows this species to benefit from benthic and pelagic pathways in the EEC, explaining its high bio-

mass [21]. The confirmation of the ontogenetic change of diet for whiting confirms the need for a

better consideration of this aspect of the dietary changes in this species [17].

Several research perspectives emerge from this study. First, although our work focused on

two seasons (autumn and winter), future studies could extend these analyzes to spring and sum-

mer. Higher temperature and productivity during these seasons may thus drive different ecosys-

tem functioning patterns and trophic behaviors. Second, one could investigate the major effects

of intraspecific diet variations on ecosystem functioning, which are commonly overlooked [96,

97]. In addition, this study considered 5cm-size class as homogeneous but discrepancies may

also occur between individuals of the same class. Future studies could investigate these varia-

tions, and their potential effect on ecosystem functioning. The effects of ontogenetic variation

could also be integrated in ecosystem models, such as those currently being implemented in the

EEC, e.g., Atlantis [19], or OSMOSE [15], thereby increasing their capacity to capture the com-

plexity of marine ecosystems and to inform fisheries management [4].

Supporting information

S1 Fig. Localization of whiting (orange crosses) and Aequipecten opercularis (green

crosses) sampling stations by this, but also previous studies (Jennings & Warr 2003, P.
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Cresson unpubl. data). An interpolation of A. opercularis’ δ15N values was performed to

obtain baseline isotope ratios at all stations where whiting were collected (see the method in

the material and method section of the manuscript).

(DOCX)

S2 Fig. Ontogenetic dietary changes for autumn and winter. Figures A and B represented

percentages of occurrence (%O) in autumn (A) and winter (B) respectively. Figures C and D

represented percentages of abundance (%N) in autumn (C) and winter (D) respectively. The

number of non-empty stomach content is expressed under each size class.

(DOCX)

S1 Table. Geographic coordinates of the whiting sampling stations for both seasons (CGFS

in autumn and IBTS in winter). HaulNum corresponds to the number of the sampling sta-

tion. δ15N baseline corresponds to interpolated δ15N isotopic ratios of A. opercularis at all sta-

tions where whiting were collected.

(DOCX)
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